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PARETO-OPTIMAL FORMS OF AXISYMMETRIC BODIES MOVING AT HIGH SUPERSONIC SPEEDS* 

O.A. GIL'MAN and N.N. PILYUGIN 

The problem of optimizing the shape of an axisymmetric body with respect 
to three criteria, namely the wave resistance and radiative and 
convective heating during its motion in the atmosphere at supersonic 
speeds, is considered. The optimal solution of the problem with many 
criteria is described as the Pareto-optimal solution. A system of 
integrodifferential equations is obtained for determining the optimal 
solution. A numerical algorithm of the solution is proposed, and used 
as the basis for the numerical determination of the optimal body 
profiles ensuring that one of the following four criteria is satisfied: 
1) minimum radiative heating of the body; 2) minimum sum of radiative 
and convective heating; 3) minimum value of the total heating and wave 
resistance; 4) minimum value of convective heating and wave resistance. 
Pareto diagrams are given for the solutions obtained, and a comparison 
is made of the total heating of the optimal and reference bodies, namely 
of a sphere and a paraboloid. 

When choosing the shape of aircraft, one must take into account a large number of physical 
factors (the wave resistance, surface heating, etc.) characterizing the condition of the 

flight. The problem of choosing a shape that is optimal with respect to one of the criteria 

was studied in detail in e.g. /l-5/. It was found, in particular, that the shape of the body 
with minimum wave resistance is quite different from the shape of a body with minimum heating. 
The question arises of which body should be regarded as optimal when several criteria have to 
be taken into account, for example the wave resistance and the heating. We propose below 
that the concept of Pareto optimality /6/ should be adopted in the case of optimization with 
respect to several criteria. 

We consider three functionals: the radiative heating QR = ml, the wave resistance 

R = ‘D, and convective heating Qc = D3. The distribution of radiative heat flux over the 
surface of a non-disintegrating axisymmetric body is sought by solving the equations of gas 
dynamics for a non-viscous, bulk-radiating shock layer around the body, based on the method 
of a strongly compressed layer. The functional @, for radiative heating in given in /5/. A 
hypersonic theory of Newton /l/ is used to determine the wave resistance. Convective heat 
exchange is found using /2, 3/ the hypothesis of local similarity in the flow past a plate 
and the hypersonic Newton's theory, and the functional mJ was obtained for bodies with flat 
nose and limited inclination of the side surface. As a result, we obtain the following 

expressions for the functionals: 

0, = 5 Li (u, u’, t) dt + fi (uO)r i=1,2,3 

L, = ;&.)(I- W(u', t)), La=& 

L, = uW1/(1 -rP)(i + fPU'2) 

a=++o$J. - b=Y-l n=zK&. du 
Y ' 1 i+eu' 

11=x 

w = p-l/a, P=I+B~,&+ a=n+/r 

fl = fz = -&IL& f,=E-&U~l 

(1) 
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Here the assumption that the velocity of the gas at the edge of the flat nose is the 
as the speed of sound, results in restricting the maximum value of the pressure on the 
surface /3/, and this corresponds to restricting the maximum angle of inclination of the 
surface: 

EU’ <WI 11, UQ-3 II, = (&)“” 

Here and in (1) I, y are the coordinates along the axis of the body and along its normal, 
the length of the body, r is the radius of the middle section, e is the selative thick- 
of the body, u0 =u(O) is the radius of the flat nose section, y is the ratio of the 

specific heats, o is the power index in the relation connecting the viscosity and temperature, 
and the constants x and q are determined by the type of flow in the boundary layer. For 
laminar flow x = 2, q = 1, and for turbulent flow x =Slr, 9 ='lr, n is the power index in 
the relation connecting the Planck absorption coefficient and the temperature, r is the 
radiation parameter /4, 5/, equal to the ratio of the characteristic radiative flux Q+ behind 
the discontinuity to the kinetic energy flux (0.5p,v,') of incoming gas flow, and P-9 VCM 
are the density and velocity of the incoming gas. 

Let us recall the concept of Pareto-optimality /6/. Suppose there are two criteria, ID, 
and 0,. which have to be minimized. The solution will be Pareto-optimal if one of the 
criteria cannot be improved without adversely affecting the other criterion. If the problem 
has an infinite number of such solutions, then the line formed by them in the plane ~R,Q~ is 
a Pareto diagram. The question arises of how to obtain this set of solutions. The deter- 
mination of two extreme points of the line is obvious. The points represent the solutions 
minimizing the functional @, only, and the functional UQ only. Moreover, the Pareto-optimal 
solution can be interpreted as the minimum of the functional @, for a prescribed value of 0,. 
The same solution can also be interpreted as a minimum of the functional ITI, for a prescribed 
value of al. The analogy between the two-criteria problem and the problem with an isoperimetric 
constraint is clear. Thus, by minimizing the linear combination of the functionals we obtain 
a set of solutions which are Pareto-optimal. All the above can be generalized to the case 
of several criteria. 

We shall formulate the three-criteria problem of the optimal shape of a body in a super- 
sonic gas flow as follows. It is required to find, amongst the-functions u(1) satisfying 
the differential condition EU'< u. and the boundary condition u(t = 1) = 1, the functions 
which minimize the convolution of the functionals @= pIDD, f p@, + p.@s. The solution is 
determined here by the value of the weighting factors p = {pl. pa,ps). Usually the most 
important coefficient is assumed to be equal to unity, and the values of the remaining par- 
ameters are chosen from the interval (0, i), and the higher the priority of the functional 
Di, the greater the value assigned to the corresponding coefficient pi. The final value of 
the vector p is found when solving the problem, using the Pareto diagram. 

Using the method of Lagrange multipliers /l, 7/ we can reduce the problem to that of 
finding the unconditional extremum of the functional 

$=min{SK(a,u',t)dt+f(~o)}, u(1) = 1 (2) n 

The Euler equations of problem (2) have a first integral. The first integral and three 
Euler equations for the unknown functions ~1 (t), u (t) h (t) and a (t) can be written in the 
form (H, 1 = const): 

F (u, u, y, G) + h(w - a") = H, Kx*’ = u - w + a* = 0 (3) 
1 

y=S1/1+u"dt, 2 = y(O), K,’ = 21a = 0 
1 
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We see from system 
following type: 

10. A segment of a 

and condition K,, > 0 

(3) that the extremum for t>O can consist of the arcs of the 

two-sided extremum 

h = 0, F (~3 u, Y, G)--~=0,a2=w-v 

must hold on this solution. 

(4) 

(5) 

20. A segment of the boundary extremum 

CC = 0, u = w, h= (H - F)jw 

and condition h>O must hold on solution (5). 
We join these arcs in the following manner. 
1) at the points of intersection of the lines F-H = 0 and v--w=0 in the (u, V) 

plane, in which case the Weierstrass-Erdman conditions /7/ hold automatically; 
2) at the angle points using the Weierstrass-Erdman condition /7/ 

[(u-K,. - K)l 6t + [Ku.1 6u = 0 

(the square brackets denote the difference between the value calculated to the left and right 
of the angle point). Using Eqs.(4) and (5), we can write the condition in the form 

(UL, - L - WL") I(& ") $ L I(U.70) = 0 

The condition u(i) = 1 and the condition of transversality 

(T (u, v, 1) + 1 (G) Lo = 0 (‘3) 

T (u,u,I) = {pru {$$$(1 -IV) + $(&)=I P-'-"a (2a + v") - I} + 

IL+ (1 + .*)a s++,* 2e+b+uZ- ( 

must hold at the ends of the extremal curve. 
Using Eqs.(4) and (5), we shall write condition (6) for the arcs of different type thus: 

1". T(u,v,z)Ir=o=O; 2". (T(u,w,z)+ q))130 =o 

Hence we have reduced the problem of solving problem (2) to that of solving the following 
system of integrodifferential equations with unknown functions u(t), v(t) and unknown H, 1: 

F, b, 0, Y b, 4, G b, v)) = 0 (7) 

EU’ = v, 1 =i 1f1+ v=at, u (1) = 1, T, (u (O), v(O), 1) z 0 (8) 

Here F,=F-H, T,=T for arcs of type lo, and F, = v - w, T, = T + (H - F)lm for 
arcs of type 2". 

The functions a(t), h(t) are expressed explicitly in terms of n (C v (t). 
We construct the solution of system (7) and (8) as follows. Instead of the variable t 

we use u, which is possible by virtue of the monotonic form of the relation u (t). We 
introduce the functional 

The functional Q reaches a minimum, equal to zero, on solutions of the system of integro- 

differential Eqs.('l), (a), by virtue of Eq.(8). It is clear that the pair of numbers H, 1 
and the function v(u), which reduce the functional Q to zero and satisfy the system of 

equations F, = 0, T, = 0, are also a solution of system (7), (8). Therefore, instead of 
solving the system of integrodifferential equations, we propose to seek a solution u (H, 1, u) 
of integral Eq.(7) which will satisfy the boundary condition T, = 0, and to find the values 
of parameters H, 1, for which Q (H, 1, v(H, 1, u)) = 0, after which all functions of system (7), 
(8) can be found with help of a single quadrature. 

We shall seek the solution of this problem using the method of successive approximations: 
by directional inspection we construct a sequence of points (Hk, lk) in parameter plane H, 1, 
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and a corresponding sequence of functions vk(HR, EL, uf which ensure, in the limit, a minimum 
of the functional Q, The solution of integral Eq.(7) is reduced, for every k, to solving 
a system of N algebraic equations with a single variable in each equation. 

Using the above algorithm we determined numerically the profiles of axisymnetric bodies 
ensuring that one of the following criteria holds: 

1) a minimum of radiative heating QR = @I . 
2) the smallest sum of the radiative and convective heating 

Q = QR -k Qc, Qc = p@aa 

3) a Pareto-minimum of the convective heating Q = Qa +Qc ,and the wave resistance R = 
6 0 = Q + paf0. 

4) a Pareto minimum of the convective heating QC and the wave resistance R. 
A’11 computations were carried out using the following values of the parameters n=O 

(a = 4); y = 1,1; n = 1, x = 2 (laminar boundary layer). 
Problem 1 was solved earlier /4/ nunerically, using the local variation method. In the 

case of smooth solutions, coaplete agreement of the solutions exists (to within the thickness 
of the lines in the figure), and this implies the suitability of the algorithm developed 
above. 

The algorithm was realized in Fortran- (the machine-independent version). The time 
taken to compute a single version depends on the initial conditions, on the parameters of the 
problem, and on the number N of partition points. Computing a single version on an ES-1040 
digital computer with N= 50 does not take more than 3 minutes. The algorithm does not take 
more tine than the method of local variations and is, in addition, humerically analytic, and 
this is the reason why it is preferable to other numerical methods (e.g. to the nethod of 
local variations). The algorithm makes it possible to obtain solutions with constraints imposed 
on the derivative, and with a discontinuity in the derivative. This made is possible to 
determine the shape of the body that is optimal with respect to the sum of radiative and 
convective heating. The flexibility of the numerically analytic method enabled us to obtain 
a solution for the two-criteria problem (convective heating and wave resistance) of optimizing 
an axisymmetric body where the optimal generatrix contains a segment of the boundary extremum. 
In the last problem the proposed algorithm is relatively fast. Its speed, as compared with 
the general case of the algorithm, is ensured by the fact that the optimization is carried 
out over a single parameter H and not over H and z as in the general case. For N= 100 a 
single version is computed in about 2 minutes on a CM-4 computer, and in a few seconds on an 
ES-1040 computer. 

After solving the variational problem, we calculated the dinenionless heat fluxes Qe, QC 
and 8, integral over the surface of the body defined above (the dimensional fluxes are referred 
to the quantity l/pposVmS~) where S is the area of the middle cross-section of the body. 

We also compared the total heating of the optimal bodies Qopt with that of the reference 
bodies (a sphere and a paraboloid1 Qcp, using the formula 

Q = (I Qzx - Qopt VQu,t). fOO% 

The results of computing the shape of the bodies with least total heating Q = QR -I- Qc, 
FZ1P@3 are given in Fig.1 (problem 2). The computations were carried out for E = 1 with 

(curves 1-3) and B = 10 (curves 4-6). 
The convective and radiative heating of a hemisphere was computed earlier /8f for various 

flow modes. It was shown that the ratio QoiQa is contained within the limits from 0.03 to 2. 
The distribution of radiative and convective heat fluxes at the stagnation point in given in 
/9/ along the trajectories for bodies of different forms (spherical, a sphere-cylinder.and a 
sphere-cone). In all cases the predominance of radiative fluxes (Qc/QR= 0,25) was observed, 
although the fluxes themselves can vary over an arbitrary wide range. 

Using the results of /8, 9/, we chose the parameters ps determining the ratio of the 
radiative and convective fluxes towards the body in such a manner, that the relations Qc/QR = 
1 (curves 2 and 5 of Fig-l) .and QciQR = 2 (curves 3 and 6 of Fig.11 hold For a sphere. 
Curves 1 and 4 correspond to the problem of minimum radiative heating (ps = 0) with a con- 
straint imposed on the inclination of the generatrix. The extremal curves shown in Fig.1 
have an end face in all cases at t=o (the radius of the face decreases as the irradiation 
parameter B decreases) and consists of arcs of type lo and 2" (curves 4, 5). We note that 
when B< 1, then the size of the face at t = 0 is not large and is indistinguishable 
within the scale Fig.1. Near t =0 and t = 1 the generatrix becomes a segment of the 
straight line V=W~ (type 2"), and near t-i the length of the straight line section 
increases as B decreases and as ps (Qc/QR E lO,Zl) increases. 

The table give, for 
E = 1 

the values of the convective heating QC and radiative 
heating QR for bodies of a shape that is optimal with respect to the total heating, and for 
the reference bodies (a sphere or a paraboloid) for various values of ps. The table also 
gives the loss, in percents of the total heatingon a sphere q1 and paraboloid qz as 
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compared with the optimum body. 
Fig.1 shows that the form of the body that is optimal with respect to the total heating 

changes very little as ps(Qc/Qs ~[0,2]) increases, and is close to the form of a body that 
is optimal with respect to radiative heating only. The table shows that the optimization is 
governed, basically, by the radiative heating, while convective heating either decreases a 
little, or even increases. This can be explained by the fact that the functional of radiative 

heating Qs changes appreciably even when the form of the body undergoes a small change, 
while the opposite is true for the functional Qc . 

18 1. I bZ L3 R, 

Fig.1 Fig.2 

Fig.2 shows the extremal curves u (t) of problem 2 (the solution is Pareto-optimal) 

for E = 1,B = lO,p, = 0.385. Such a value of ps corresponds to the ratio of convective and 
radiative fluxes towards the sphere Qc/Qs = 0.25. Curves 1-4 in Fig.2 correspond to pz = 0;O.h; 

1; 6. Fig.2 also shows the Pareto diagram corresponding to these bodies, i.e. the curve ABCD. 
The normalized values of the wave resistance R, = @,,(p,)/O,z(p, = co) are plotted along the 

abscissa, and the normalized total heating Q1 = Q(pJQ(p, = 0) along the ordinate. The 

points 1-4 in this diagram correspond to the optimal bodies u(t) (l-4). The corresponding 
values for spherically ended blunt cones with various radii of bluntness (the line KS, K is 

a cone and S is a sphere), and for the paraboloid (point p) are also given here. 

We see from Fig.2 that any shape, Pareto-optimal with respect to a sphere, provides a 

gain with respect to heating, as well as to the wave resistance. A paraboloid compared with 

the Pareto-optimal body is inferior, for the same wave resistance, by -28% with respect to 

heating, and for the same heating -4% with respect to the wave resistance. A segment AB 
exists, in which the optimal forms will be superior, as compared with the paraboloid, in both 

criteria. However, the segment BD is also of interest. For example, a body corresponding 
to the point C in the Pareto diagram will lose by -10% in wave resistance, and gain -50% 
inheating,as compared with the paraboloid. 

Fig.3 shows the results of a numerical solution of problem 4. The Pareto-optimal forms 

u (0 are shown for E = 1 and for six values of the parameter p2, The form 1 (pl = 0) is 

optimal only with respect to convective heating, and form 6 (pz = w) only with respect to 

the wave resistance. The forms 2-5 (p, = 0.05; 0.07; 0.1; 0.3 respectively (are Pareto-optimal 

with respect to wave resistance and convective heating. The curves are composed of.arcs of 
type lo (curves 1, 2 and 6) and type 2"-1" (curves 3, 4 and 5). Fig.3 shows their Pareto 

diagrams. The normalized value of the wave resistance RI = @,(p,)/@,,(p, = m) is plotted 

along the abscissa, and that of convective heating Q1 =@,s(p2)/Q)3(p2 = 0) along the ordinate. 
The points 1, 2, . . . . 6 in Fig.3. The curve AB shows the values of R,,Q, on a truncated 

cone, in which the radius of the end face of a truncated tip changes from 0.1 (point A) ,to 
0.9 (point B). 

The Pareto diagram enables one to estimate the gain or loss of the bodies, Pareto optimal 

for various p and reference bodies, and enables us to choose the most acceptable forms out 

of the set of the relatively optimal forms. 

The authors thank G.G. Chernyi and G.Yu. Stepanov for assessing the paper. 
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